Почему летит самолёт — аппарат тяжелее воздуха
Наверно, нет человека, который глядя, как летит самолёт, не задавался вопросом: «Как он это делает?»
Люди всегда мечтали летать. Первым воздухоплавателем попытавшимся взлететь с помощью крыльев, можно, наверное, считать Икара. Затем, на протяжении тысячелетий у него было множество последователей, но настоящий успех выпал на долю братьев Райт. Именно они считаются изобретателями самолёта.
Видя на земле огромные пассажирские лайнеры, двухэтажные Боинги, например, совершенно невозможно понять, как эта многотонная металлическая махина поднимается в воздух, настолько это кажется противоестественным. Мало того, даже люди, всю жизнь проработавшие в смежных с авиацией отраслях и, безусловно, знающие теорию воздухоплавания, иногда честно признаются, что не понимают, как летают самолёты. Но мы все же попробуем разобраться.
Полёт
Самолёт держится в воздухе благодаря действующей на него «подъёмной силе», которая возникает только в движении, которое обеспечивают двигатели, закреплённые на крыльях или фюзеляже.
- Реактивные двигатели выбрасывают назад струю продуктов сгорания керосина или другого авиационного топлива, толкая самолёт вперёд.
- Лопасти винтового двигателя как бы ввинчиваются в воздух и тянут самолёт за собой.
Подъемная сила
Подъемная сила возникает, когда набегающий поток воздуха обтекает крыло. Благодаря особой форме сечения крыла, часть потока над крылом имеет большую скорость, чем поток под крылом. Это происходит потому, что верхняя поверхность крыла выпуклая, в отличие от плоской нижней. В итоге воздуху, обтекающему крыло сверху, приходится пройти больший путь, соответственно с большей скоростью. А чем больше скорость потока, тем меньше давление в нём, и наоборот. Чем меньше скорость — тем больше давление.
В 1838 году, когда ещё аэродинамики, как таковой, не существовало, швейцарский физик Даниил Бернулли описал это явление, сформулировав закон, названный по его имени. Бернулли, правда, описывал течение потоков жидкости, но с возникновением и развитием авиации, его открытие оказалось как нельзя более кстати. Давление под крылом превышает давление сверху и выталкивает крыло, а с ним и самолёт, вверх.
Другое слагаемое подъёмной силы — так называемый «угол атаки». Крыло располагается под острым углом к встречному потоку воздуха, благодаря чему давление под крылом выше, чем сверху.
С какой скоростью летают самолёты
Для возникновения подъёмной силы необходима определённая, и довольно высокая, скорость движения. Различают минимальную скорость, она необходима для отрыва от земли, максимальную, и крейсерскую, на которой самолёт летит большую часть маршрута, она составляет около 80% максимальной. Крейсерская скорость современных пассажирских лайнеров 850-950 км в час.
Ещё есть понятие путевой скорости, которая складывается из собственной скорости самолёта и скорости воздушных потоков, которые ему приходится преодолевать. Именно, исходя из неё, рассчитывают продолжительность рейса.
Скорость, необходимая для взлёта зависит от массы самолёта, и для современных пассажирских судов составляет от 180 до 280 км в час. Примерно на такой же скорости производится посадка.
Высота
Высота полёта тоже выбирается не произвольно, а определяется большим количеством факторов, соображениями экономии топлива и безопасности.
У поверхности земли воздух более плотный, соответственно, он оказывает большое сопротивление движению, вызывая повышенный расход топлива. С увеличением высоты воздух становится более разряжённым, и сопротивление уменьшается. Оптимальной высотой для полёта считается высота около 10 000 метров. Расход топлива при этом минимален.
Ещё одним существенным плюсом полётов на больших высотах является отсутствие здесь птиц, столкновения с которыми не раз приводили к катастрофам.
Подниматься выше 12 000-13 000 метров гражданские самолёты не могут, так как слишком сильное разряжение препятствует нормальной работе двигателей.
Управление самолётом
Управление самолётом осуществляется путём увеличения или уменьшения тяги двигателя. При этом изменяется скорость, соответственно подъёмная сила и высота полёта. Для боле тонкого управления процессами изменения высоты и поворотов служат средства механизации крыла и рули, находящиеся на хвостовом оперении.
Взлёт и посадка
Чтобы подъёмная сила стала достаточной, для отрыва самолёта от земли, он должен развить достаточную скорость. Для этого служат взлётно-посадочные полосы. Для тяжёлых пассажирских или транспортных самолётов нужны длинные ВПП, длиной 3-4 километра.
За состоянием полос тщательно следят аэродромные службы, поддерживая их в идеально чистом состоянии, так как инородные предметы, попадая в двигатель, могут привести к аварии, а снег и лёд на полосе представляют большую опасность при взлёте и посадке.
При разбеге самолёта наступает момент, после которого отменить взлёт уже нельзя, так как скорость становится настолько велика, что самолёт уже не сможет остановиться в пределах полосы. Это так и называется — «скорость принятия решения».
Посадка — очень ответственный момент полёта, лётчики постепенно сбрасывают скорость, вследствие чего уменьшается подъёмная сила и самолёт снижается. Перед самой землёй скорость уже такая низкая, что на крыльях выпускаются закрылки, которые несколько увеличивают подъёмную силу и позволяют мягко посадить самолёт.
Таким образом, как бы странно нам это не казалось, самолёты летают, причём в строгом соответствии с законами физики.
20+ фактов о самолетах, которые позволят пересмотреть свое отношение к полетам
Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту
красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте
Не все в этом признаются, но летать самолетом боятся очень многие. По разным статистическим данным, 85 % пассажиров в самолете испытывают тревогу разной степени выраженности, а 10 % можно назвать аэрофобами. Одной из причин данной фобии психологи называют привычку все контролировать и не доверять окружающему миру. В условиях полета мы вынуждены это делать, и психика начинает бунтовать.
Мы в AdMe.ru решили еще раз обратить внимание на интересные факты о полетах, которые, возможно, позволят посмотреть на аэротранспорт с другой стороны и преодолеть страх, если он возникает.
Что говорит статистика
Интересно, что в наибольшей безопасности мы ощущаем себя, когда едем в поезде. Но железнодорожные аварии происходят гораздо чаще, чем авиационные. Однако они практически не получают общественного резонанса и становятся предметом обсуждения только в той стране или городе, где произошли. При этом практически все катастрофы с участием гражданской авиации вызывают резонанс во всем мире.
Считается, что самолет является самым безопасным транспортом, но на самом деле это не так. Наиболее безопасно передвигаться на эскалаторе, а самолет — 2-й по безопасности вид транспорта. Вы уже представили, как преодолеваете на эскалаторе расстояние в 1 тыс. км?
Человека, который страдает аэрофобией, не успокаивают сведения, что риск катастрофы составляет 1 на 11 млн вылетов, а вероятность катастрофы равна 0,00001 %. А вот если подсчитать, что вероятность благополучного приземления составляет 99,9999815 %, то это уже совсем другое дело, правда? Что касается автомобилей, то шанс погибнуть в автокатастрофе составляет 1 к 5 тыс.
Считается, что если пассажир будет садиться каждый день на случайный рейс, то ему понадобится 21 тыс. лет, чтобы попасть в авиакатастрофу.
Мнение, что в случае катастрофы шансы выжить минимальны, неверно. В результате подробного изучения серьезных аварий в течение последних 40 лет выяснилось, что во всех этих катастрофах примерно 67 % людей, находившихся на борту, остались живы.
Большинство людей инстинктивно считают более безопасной аварийную посадку на воду, и это мнение подтверждается статистикой. Вероятность выживания увеличивается на 50 %, когда самолет совершает аварийное приводнение, даже если он и не рассчитан на подобные меры.
Почему мы боимся турбулентности
В зоне турбулентности большинство пассажиров начинают паниковать. Это связано с тем, что люди боятся, что из-за тряски могут повредиться важные системы лайнера. Специалисты заверяют: это маловероятно, потому что нагрузка на самолет при полете через самую сильную турбулентность сопоставима с нагрузкой на автомобиль, который едет по не очень ровной дороге.
За 120 лет авиаполетов в мире не было ни одного случая аварии, причиной которой стала турбулентность.
А вот получить травму при сильной турбулентности возможно, если не соблюдать указания экипажа оставаться на местах и пристегнуться. Если турбулентность уж очень тревожит, выбирайте места, где она практически не ощущается — ближе к кабине пилотов.
Обычно пилоты знают зоны, в которых может возникнуть турбулентность, и готовы к ней. Однако она может возникнуть не только в облаках, но и в чистом небе с отличной видимостью. Основная ее опасность заключается как раз в ее непредсказуемости: у экипажа практически не остается времени предупредить пассажиров о необходимости вернуться на свои места.
Как летают самолеты 🚩 как держится самолет в воздухе 🚩 Авиация и космос
Люди давно видели, что птицы летают. У некоторых исследователей появлялись безумные идеи – они хотели полететь, но почему же результат оказался таким плачевным? Давно проводились попытки приделать к себе крылья, и, махая ими, взлететь в небо как пернатые. Оказалось, что силы человека недостаточно для поднятия себя на машущих крыльях.Первыми народными умельцами были естествоиспытатели из Китая. Сведения о них записаны в «Цань-хань-шу» в первом веке нашей эры. Дальше история пестрит случаями подобного рода, которые происходили и в Европе, и в Азии, и в России.
Первое научное обоснование процессу полета дал Леонардо да Винчи в 1505 году. Он заметил, что птицам не обязательно махать крыльями, они могут держаться на неподвижном воздухе. Из этого ученый сделал вывод, что полет возможен, когда крылья движутся относительно воздуха, т.е. когда машут крыльями при отсутствии ветра или когда дует ветер при неподвижных крыльях.
Удерживать самолет в воздухе помогает подъемная сила, которая действует только на больших скоростях. Особая контракция крыла позволяет создавать подъемную силу. Воздух, который движется над и под крылом, претерпевает изменения. Над крылом он разреженный, а под крылом – сжатый. Создаются два воздушных потока, направленные вертикально. Нижний поток приподнимает крылья, т.е. самолет, а верхний подталкивает вверх. Таким образом, получается, что на больших скоростях воздух под летательным аппаратом становится твердым.
Так реализуется вертикальное движение, но что заставляет самолет двигаться горизонтально? – Двигатели! Пропеллеры как бы просверливают путь в воздушном пространстве, преодолевая сопротивление воздуха.
Таким образом, подъемная сила преодолевает силу притяжения, а тяговая – силу торможения, и самолет летит.
В самолете все держится на равновесии подъемной силы и силы земного притяжения. Самолет летит прямо. Увеличение скорости полета увеличит подъемную силу, самолет станет подниматься. Чтобы нивелировать этот эффект, пилот обязан опустить нос самолета.
Уменьшение скорости окажет прямо противоположный эффект, и пилоту потребуется поднять нос самолета. Если этого не сделать, произойдет крушение. В связи с указанными выше особенностями существует риск разбиться, когда самолет теряет высоту. Если это происходит близко к поверхности земли, риск почти 100%. Если это происходит высоко над землей, пилот успеет увеличить скорость и набрать высоту.
Почему самолёт летает? | Наука и жизнь
Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума.Н. Е. Жуковский
Фото И. Дмитриева.
Рис. 1. При взаимодействии плоской пластины с потоком воздуха возникают подъёмная сила и сила сопротивления.
Рис. 2. При обтекании потоком воздуха выгнутого крыла давление на его нижней поверхности будет выше, чем на верхней. Разница в давлениях даёт подъёмную силу.
Рис. 3. Отклоняя ручку управления, лётчик изменяет форму руля высоты (1—3) и крыльев (4—6).
Рис. 4. Руль направления отклоняют педалями.
‹
›
Вы когда-нибудь летали? Не на самолёте, не на вертолёте, не на воздушном шаре, а сами — как птица? Не приходилось? И мне не довелось. Впрочем, насколько я знаю, это не удалось никому.
Почему же человек не смог этого сделать, ведь кажется, нужно лишь скопировать крылья птицы, прикрепить их к рукам и, подражая пернатым, взмыть в поднебесье. Но не тут-то было. Оказалось, что человеку не хватает сил, чтобы поднять себя в воздух на машущих крыльях. Рассказами о таких попытках пестрят летописи всех народов, от древнекитайских и арабских (первое упоминание содержится в китайской хронике «Цаньханьшу», написанной ещё в I в. н.э.) до европейских и русских. Мастера в разных странах использовали для изготовления крыльев слюду, тонкие прутья, кожу, перья, но полететь так никому и не удалось.
В 1505 году великий Леонардо да Винчи писал: «… когда птица находится в ветре, она может держаться в нём без взмахов крыльями, ибо ту же роль, которую при неподвижном воздухе крыло выполняет в отношении воздуха, выполняет движущийся воздух в отношении крыльев при неподвижных крыльях». Звучит это сложно, но по сути не просто верно, а гениально. Из этой идеи следует: чтобы полететь, не нужно размахивать крыльями, нужно заставить их двигаться относительно воздуха. А для этого крылу нужно просто сообщить горизонтальную скорость. От взаимодействия крыла с воздухом возникнет подъёмная сила, и, как только её величина окажется больше величины веса самого крыла и всего, что с ним связано, начнётся полёт. Дело оставалось за малым: сделать подходящее крыло и суметь разогнать его до необходимой скорости.
Но опять возник вопрос: какой формы должно быть крыло? Первые эксперименты проводили с крыльями плоской формы. Посмотрите на схему (рис. 1). Если на плоскую пластину под небольшим углом действует набегающий поток воздуха, то возникают подъёмная сила и сила сопротивления. Сила сопротивления старается «сдуть» пластину назад, а подъёмная сила — поднять. Угол, под которым воздух дует на крыло, называется углом атаки. Чем больше угол атаки, то есть чем круче к потоку наклонена пластина, тем больше подъёмная сила, но вырастает и сила сопротивления.
Ещё в 80-х годах XIX века учёные выяснили, что оптимальный угол атаки для плоского крыла лежит в пределах от 2 до 9 градусов. Если угол сделать меньше — сопротивление будет небольшим, но и подъёмная сила маленькой. Если развернуться круче к потоку — сопротивление окажется так велико, что крыло превратится скорее в парус. Отношение величины подъёмной силы к величине силы сопротивления называется аэродинамическим качеством. Это один из самых важных критериев, относящихся к летательному аппарату. Оно и понятно, ведь чем выше аэродинамическое качество, тем меньше энергии тратит летательный аппарат на преодоление сопротивления воздуха.
Вернёмся к крылу. Наблюдательные люди очень давно заметили, что у птиц крылья не плоские. Всё в тех же 1880-х годах английский физик Горацио Филлипс провёл эксперименты в аэродинамической трубе собственной конструкции и доказал, что аэродинамическое качество выпуклой пластины значительно больше, чем плоской. Нашлось и довольно простое объяснение этому факту.
Представьте, что вам удалось сделать крыло, у которого нижняя поверхность плоская, а верхняя — выпуклая. (Очень просто склеить модель такого крыла из обычного листа бумаги.) Теперь посмотрим на вторую схему (рис. 2). Поток воздуха, набегающий на переднюю кромку крыла, делится на две части: одна обтекает крыло снизу, другая — сверху. Обратите внимание, что сверху воздуху приходится пройти путь несколько больший, чем снизу, следовательно, сверху скорость воздуха будет тоже чуть больше, чем снизу, не так ли? Но физикам известно, что с увеличением скорости давление в потоке газа падает. Смотрите, что получается: давление воздуха под крылом оказывается выше, чем над ним! Разница давлений направлена вверх, вот вам и подъёмная сила. А если добавить угол атаки, то подъёмная сила ещё увеличится.
Одним из первых вогнутые крылья сделал талантливый немецкий инженер Отто Лилиенталь. Он построил 12 моделей планеров и совершил на них около тысячи полётов. 10 августа 1896 года во время полёта в Берлине его планер перевернуло внезапным порывом ветра и отважный пилот-исследователь погиб. Теоретическое обоснование парения птиц, продолженное нашим великим соотечественником Николаем Егоровичем Жуковским, определило всё дальнейшее развитие авиации.
А теперь попробуем разобраться, как подъёмную силу можно изменять и использовать для управления самолётом. У всех современных самолётов крылья сделаны из нескольких элементов. Основная часть крыла неподвижна относительно фюзеляжа, а на задней кромке устанавливают как бы небольшие дополнительные крылышки-закрылки. В полёте они продолжают профиль крыла, а на взлёте, при посадке или при манёврах в воздухе могут отклоняться вниз. При этом подъёмная сила крыла возрастает. Такие же маленькие дополнительные поворотные крылышки есть на вертикальном оперении (это руль направления) и на горизонтальном оперении (это руль высоты). Если такую дополнительную часть отклонить, то форма крыла или оперения меняется, и меняется его подъёмная сила. Посмотрим на третью схему (рис. 3 на с. 83). В общем случае подъёмная сила увеличивается в сторону, противоположную отклонению рулевой поверхности.
Расскажу в самых общих чертах, как управляется самолёт. Чтобы подняться вверх, нужно слегка опустить хвост, тогда возрастёт угол атаки крыла, самолёт начнёт набирать высоту. Для этого пилот должен потянуть штурвал (ручку управления) на себя. Руль высоты на стабилизаторе отклоняется вверх, его подъёмная сила уменьшается и хвост опускается. При этом угол атаки крыла увеличивается и его подъёмная сила возрастает. Чтобы спикировать, пилот наклоняет штурвал вперёд. Руль высоты отклоняется вниз, самолёт задирает хвост и начинает снижение.
Наклонить машину вправо или влево можно при помощи элеронов. Они расположены на концевых частях крыльев. Наклон ручки управления (или поворот штурвала) к правому борту заставляет правый элерон подняться, а левый — опуститься. Соответственно подъёмная сила на левом крыле возрастает, а на правом падает, и самолёт наклоняется вправо. Ну а как наклонить самолёт влево — догадайтесь сами.
Рулём направления управляют с помощью педалей (рис. 4). Толкаете вперёд левую педаль — самолёт поворачивает налево, толкаете правую — направо. Но делает это машина «лениво». А вот чтобы самолёт быстро развернулся, нужно сделать несколько движений. Предположим, вы собираетесь повернуть влево. Для этого нужно накренить машину влево (повернуть штурвал или наклонить ручку управления) и в то же время нажать на левую педаль и взять штурвал на себя.
Вот, собственно, и всё. Вы можете спросить, почему же лётчиков учат летать несколько лет? Да потому, что просто всё только на бумаге. Вот вы дали самолёту крен, взяли ручку на себя, а самолёт вдруг начал съезжать вбок, как на скользкой горке. Почему? Что делать? Или в горизонтальном полёте вы решили подняться повыше, взяли штурвал на себя, а самолёт вдруг, вместо того чтобы забираться на высоту, клюнул носом и по спирали полетел вниз, как говорят, вошёл в «штопор».
Пилоту в полёте нужно следить за работой двигателей, за направлением и высотой, за погодой и пассажирами, за собственным курсом и курсами других самолётов и множеством других важных параметров. Пилот должен знать теорию полёта, расположение и порядок работы органов управления, должен быть внимательным и смелым, здоровым, а самое главное — любить летать.
12 простых способов побороть страх перед авиаперелетами
Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту
красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте
В течение целого года мы с нетерпением ждем периода отпусков, чтобы наконец отправиться в теплые страны. Однако из-за страха полетов многие думают о предстоящем путешествии с тревогой.
Мы в AdMe.ru решили выяснить, возможно ли побороть страх авиаперелетов, и нашли 14 действительно эффективных способов.
1. Используйте теорию
Многие боятся авиаперелетов из-за того, что подсознательно не понимают, как огромная железная махина может так прочно держаться в воздухе. Для того чтобы побороть сомнения, достаточно изучить теорию.
Погуглив, вы узнаете:
- Самолет держится в воздухе ничуть не хуже, чем машина держится на дороге.
- Турбулентность, проще говоря, это движение по «грубому воздуху», как по рыхлой дороге.
- Диспетчеры скрупулезно простраивают маршрут полета, поэтому самолеты не сталкиваются.
2. Изучите статистику
Статистика — ваш друг, ведь, согласно подсчетам, вероятность погибнуть в результате авиакатастрофы крайне мала (1 к 30 млн). Для пущего эффекта сравните эту опасность с другими рисками.
- Например, намного проще умереть от пищевого отравления, чем от падения самолета.
- Самое опасное транспортное средство — автомобиль. Самолет примерно в 6 тыс. раз безопаснее.
- Прямо сейчас в воздухе находится около 13 тыс. самолетов, в каждом из которых есть хоть один перепуганный пассажир. И он будет счастлив, когда самолет удачно приземлится.
3. Подготовьтесь к ощущениям
Взлет самолета — необходимая скорость, взлетная масса, алгоритм действий пилота
Взлетающий самолёт способен подняться в воздух только при достижении определенной скорости. Она отличается от максимальной и крейсерской. Существуют модели летательных аппаратов, которые могут набирать разгон всего за несколько секунд.
Если говорить о пассажирских авиалайнерах, то ситуация немного иная. По нескольку самолетов в день взлетает в среднестатистическом небольшом аэропорту. Обычно это разные модели, с разными техническими характеристиками. Речь пойдет о типичных авиалайнерах для перевозки пассажиров и грузов, а не об экспериментальной авиации.
Почему самолет поднимается в воздух — суть принципа
Понятно, что самолету для взлета нужно приобрести скорость. Подъемная сила зависит от следующих основных факторов:
- формы крыльев летательного аппарата;
- мощности двигателя;
- угла атаки крыла;
- скорости набегающего потока;
- плотности воздуха (может меняться от температуры).
Классическое крыло снизу плоское, прямое, а сверху слегка выпуклое и объёмное. Это создает разницу давлений, из-за чего лайнер и поднимается в воздух. Чтобы взлететь, машине необходимо компенсировать силу тяжести за счёт подъемной, противопоставив ее сопротивлению воздуха. Достичь этого можно также благодаря увеличению скорости набегающего потока, т.е. разгону самолета.
Набегающий поток обтекает крыло сверху и снизу. Воздуху приходится преодолевать большее расстояние над крылом, чем под ним. Таким образом молекулы воздуха под крылом располагаются плотнее. Из-за этого образуется разница давлений и появляется подъемная сила. Чем сильнее набегающий поток – тем больше подъемная сила. Крыло расположено к фюзеляжу под углом, что так же облегчает взлет.
Виды взлета
Классификация в зависимости от взлета самолета:
- Классический набор скорости. Разгон подразумевает движение по взлетной полосе и постепенный набор скорости.
- С тормозов. Метод чаще всего применяется при недостаточной протяженности взлетной полосы. Самолет стоит на тормозах, пока работают двигатели, и выходит на необходимый режим тяги.
- Вертикальный взлет. Возможно осуществить только при наличии у судна специальных двигателей. Речь идет не о пассажирских самолетах, а о некоторых моделях военной авиации.
- С помощью дополнительных средств. Здесь подразумеваются взлетные трамплины и катапульты. Не используются в гражданской авиации. Трамплины и катапульты компенсируют недостаточную протяженность взлетной полосы, так как благодаря ему судно набирает тягу в считанные секунды.
Логично, что в любом аэропорту есть взлетная полоса, при помощи которой самолёт разгоняется и взлетает. Второй метод практикуется реже, а последние два — в гражданской авиации не используют. Вертикальный взлет и разгон при помощи трамплина или катапульты — это то, что актуально исключительно для военной авиации.
Скорость взлета и другие параметры
Максимальная взлетная масса либо максимальный взлетный вес — это масса самолета, при которой он способен взлететь с соблюдением всех правил безопасности. Требования безопасности подразумевают много различных факторов. Например, взлётно-посадочная полоса должна достигать определенной длины. В худшем случае самолет не успеет набрать необходимую скорость, что приведет к аварии.
Важно учесть, что в приземном слое воздуха давление выше из-за так называемого экранного эффекта — резкого увеличения подъемной силы крыльев вблизи поверхности. Соответственно, с удаленностью от земли она начинает падать. Вследствие этого должен быть обеспечен необходимый запас подъемной силы, с учётом ускорения самолета при взлёте.
Взлетная скорость в среднем равна 180–270 км/ час. Конкретная цифра зависит от модели самолёта, его массы, формы и размера крыльев. Влияют и внешние факторы: погодные условия, протяженность и состояние взлётно-посадочной полосы. Наличие осадков создает большее сопротивление воздуха, к тому же они часто сопровождаются сильным ветром. Средняя скорость взлёта для типичного гражданского авиалайнера около 250 км/час.
Вы видели как происходит взлет самолета?
ДаНет
Скорость взлета типовых самолетов
Типовые пассажирские самолёты, которые взлетают со средней скоростью, бывают разными. Их показатели варьируются, например:
- Airbus A380 – 269 км/ч;
- Ту 154М – 210 км/ч;
- Ил 96 – 250 км/ч;
- Як 40 – 180 км/ч;
- Boeing 747 – 270 км/ч.
Указанная в примере скорость не всегда соответствует показателям на практике. Иногда ее недостаточно, например, в случае выпадения сильных осадков, попутного ветра. А вот в случае встречного ветра и низких температур (чем ниже температура, тем выше плотность воздуха) достаточно меньшей скорости.
Современные сверхманевренные самолёты разгоняются за считанные секунды. Это стало возможным за счет усовершенствованного двигателя и продуманной конструкции корпуса. Но военная техника хоть и обладает таким же принципом действия, работает иначе. У истребителей другой вес, конструкция крыльев, длинна и величина фюзеляжа.
Важно понимать разницу между максимальной и крейсерской скоростью летательных аппаратов. Если с первой все ясно, то определение второй вызывает массу вопросов. Крейсерская скорость — та, что выгодна для судна в полёте при минимальном расходе топлива.
В среднем она составляет около 60–80% от максимальной. Говоря другими словами, в авиации – это скорость горизонтального полёта, при которой самолет совершает рейсы по маршрутам. При взлете разгон меньше, взлетая, аппарат подходит к необходимому для него максимуму. На предельной либо максимальной скорости самолет летит крайне редко.
Как происходит взлет
Разгон самолёта при взлете зависит и от других его характеристик. На работу летательного аппарата влияет наличие:
- Закрылков и предкрылков. От крыла зависит то, сможет ли судно подняться в воздух. У большинства самолетов крыло одно (хоть и распространено мнение, что их два), проходящее через всю машину. Существуют предкрылки и закрылки, которые отчетливо видны при взлете. Они помогают судну удержаться в воздухе, особенно на этапе взлета.
- Спойлеры. Так называются элементы, которыми пилот управляет вручную. Они также прикреплены к крылу, и являются своеобразным тормозом. Ими оснащаются не все воздушные судна, а только те, где подъемная сила образуется на неподвижном крыле. Речь идет как раз о крупных самолетах вроде пассажирских либо грузовых. Спойлеры используются для того, чтобы правильно приземлиться, а также для коррекции траектории взлета самолета.
- Двигатель. Взлет происходит благодаря двигателям. Одни тянут судно за собой, а другие выталкивают вперед. Движение по воздуху возможно даже в случае частичного отказа одного из двигателей либо полной его поломки. Есть примеры, когда самолет смог преодолеть большое расстояние и приземлится только на одном, так как второй полностью вышел из строя.
Завершением взлета считается момент, когда воздушное судно выходит на высоту перехода. Этот момент означает переход от полета по реальной высоте относительно уровня ВПП или уровня моря к полету по условной высоте (эшелону).
В экстренных случаях пилот способен взлетать, увеличивая подъемную силу искусственно. Манёвр сам по себе крайне опасный и чреват потерей управления, поэтому он применяется только в неординарных ситуациях, когда другого выхода просто нет.
Что касается посадки, то она происходит аналогично. Торможение происходит за счет закрылков, из-за чего воздушное судно начинает двигаться медленнее, но с увеличенной подъемной силой и постепенно садится на землю.
Длина разбега при взлете – от 100 метров. Минимальной протяженностью взлетно-посадочной полосы считается 300 метров. Если сделать ее меньше, то велика вероятность аварии. Поэтому в целях безопасности линию разгона делают больше, чем необходимо. В крупных аэропортах она еще длиннее и может достигать нескольких километров.
Какую скорость развивает самолет при взлете? Как правило, от 200 до 800 км/час. Точнее вычислить невозможно, так как показатели меняются ежесекундно, отклоняясь от заданных параметров. Конкретный ответ возможен с учетом модели летательного аппарата, погодных условий в момент начала полёта и некоторых других факторов, описанных выше.
при какой скорости взлетают и как летают
Вы хотите преодолеть страх перед полетами? Самый лучший способ — поподробнее узнать о том, как самолет летает, с какой скоростью он движется, на какую высоту поднимается. Люди боятся неизвестности, а когда вопрос изучен и рассмотрен, то все становится простым и понятным. Поэтому обязательно прочитайте о том, как летает самолет — это первый шаг в борьбе с аэрофобией.
Почему самолет поднимается в воздух?
Если посмотреть на крыло, то вы увидите, что оно не плоское. Нижняя его поверхность гладкая, а верхняя имеет выпуклую форму. За счет этого при повышении скорости воздушного судна меняется давление воздуха на крыло. Снизу крыла скорость потока меньше, поэтому давление больше. Сверху скорость потока больше, а давление меньше. Именно за счет этого перепада давления крыло и тянет самолет вверх. Данная разница между нижним и верхним давлением называется подъемной силой крыла. По сути, при разгоне воздушное судно выталкивает вверх при достижении определенной скорости (разницы давлений).
Воздух обтекает крыло с разной скоростью, выталкивая самолет вверх
Данный принцип был обнаружен и сформулирован родоначальником аэродинамики Николаем Жуковским еще в 1904 году, и уже через 10 лет был успешно применен во время первых полетов и испытаний. Площадь, форма крыла и скорость полета рассчитаны таким образом, чтобы без проблем поднимать в воздух многотонные самолеты. Большинство современных лайнеров летают со скоростями от 180 до 260 километров в час — этого вполне достаточно для уверенного держания в воздухе.
На какой высоте летают самолеты?
Разобрались, почему летают самолеты? Теперь мы расскажем вам о том, на какой высоте они летают. Пассажирские воздушные судна “оккупировали” коридор от 5 до 12 тысяч метров. Крупные пассажирские лайнеры обычно летают на высоте 9-12 тысяч, более мелкие — 5-8 тысяч метров. Данная высота оптимальна для движения воздушных суден: на такой высоте сопротивление воздуха снижается в 5-7 раз, но кислорода еще достаточно для нормальной работы двигателей. Выше 12 тысяч самолет начинает проваливаться — разреженный воздух не создает нормальную подъемную силу, а также наблюдается острая нехватка кислорода для горения (падает мощность двигателей). Потолок для многих лайнеров — 12 200 метров.
Обратите внимание: самолет, который летит на высоте в 10 тысяч метров, экономит примерно 80% горючего по сравнению с тем, если бы он летел на высоте в 1000 метров.
Какая скорость самолета при взлете
Давайте рассмотрим, как взлетает самолет. Набирая определенную скорость он отрывается от земли. В этот момент авиалайнер наиболее неуправляем, поэтому взлетные полосы делают со значительным запасом по длине. Скорость отрыва зависит от массы и формы воздушного судна, а также от конфигурации его крыльев. Для примера мы приведем табличные значения для наиболее популярных видов самолета:
- Boeing 747 -270 км/ч.
- Airbus A 380 — 267 км/ч.
- Ил 96 — 255 км/ч.
- Boeing 737 — 220 км/ч.
- Як-40 -180 км/ч.
- Ту 154 — 215 км/ч.
В среднем, скорость отрыва у большинства современных лайнеров 230-250 км/ч. Но она непостоянна — все зависит от ускорения ветра, массы летательного аппарата, взлетной полосы, погоды и других факторов (значения могут отличаться на 10-15 км/ч в ту или другую сторону). Но на вопрос: при какой скорости взлетает самолет можно отвечать — 250 километров в час, и вы не ошибетесь.
Разные типы самолетов взлетают с разной скоростью
На какой скорости садится самолет
Посадочная скорость, также, как и взлетная, может сильно отличаться в зависимости от моделей воздушного судна, площади его крыла, веса, ветра и других факторов. В среднем, она варьируется от 220 до 250 километров в час.
Обратите внимание: скорость в воздухе (в том числе и посадочная скорость) считается не относительно земли, а относительно воздуха. Если вы засечете ее по GPS или ГЛОНАСС, то приборы покажут вам порядка 170-180 километров в час, но фактическая будет в указанном выше интервале.
Надеемся, что данная информация ответит на ваши вопросы, и летать вам станет проще. Напомним, что самолет — самый безопасный вид транспорта!
Вконтакте
Одноклассники
Google+