Уютный трикотаж: интернет магазин белорусского трикотажа

Почему самолеты летают и не падают – Почему самолет держится в воздухе? Аэродинамика «на пальцах» | Техника и Интернет

Почему самолеты летают и не падают – Почему самолет держится в воздухе? Аэродинамика «на пальцах» | Техника и Интернет

Содержание

Научно-технические мифы, часть 1. Почему летают самолеты? / Habr

В современном мире многие люди интересуются наукой и техникой и пытаются хотя бы в общих чертах понять, как работают вещи, которые их окружают. Благодаря этому стремлению к просвещению существует научно-просветительская литература и сайты, подобные Гиктаймсу. А поскольку читать и воспринимать ряды формул большинству людей затруднительно, то излагаемые в подобных изданиях теории неизбежно подвергаются значительному упрощению в попытке донести до читателя «суть» идеи с помощью простого и понятного объяснения которое легко воспринять и запомнить. К сожалению, некоторые из подобных «простых объяснений» являются в корне неверными, но при этом оказываются настолько «очевидными», что не подвергаясь особому сомнению начинают кочевать из одного издания в другое и нередко становятся доминирующей точкой зрения, несмотря на свою ошибочность.

В качестве одного из примеров попробуйте ответить на простой вопрос: «откуда возникает подъемная сила в крыле самолета»?

Если в Вашем объяснении фигурируют «разная длина верхней и нижней поверхности крыла», «разная скорость потока воздуха на верхней и нижней кромках крыла» и «закон Бернулли», то я вынужден Вам сообщить, что Вы скорее всего стали жертвой популярнейшего мифа, который преподают порою даже в школьной программе.


Давайте для начала напомним, о чем идет речь

Объяснение подъемной силы крыла в рамках мифа выглядит следующим образом:

  1. Крыло имеет несимметричный профиль снизу и сверху
  2. Непрерывный поток воздуха разделяется крылом на две части, одна из которых проходит над крылом, а другая под ним
  3. Мы рассматриваем ламинарное обтекание, в котором поток воздуха плотно прилегает к поверхности крыла
  4. Поскольку профиль несимметричен, то для того чтобы снова сойтись за крылом в одной точке «верхнему» потоку нужно проделать больший путь, чем «нижнему», поэтому воздуху над крылом приходится двигаться с большей скоростью чем под ним
  5. Согласно закону Бернулли статическое давление в потоке уменьшается с ростом скорости потока, поэтому в потоке над крылом статическое давление будет ниже
  6. Разница давлений в потоке под крылом и над ним и составляет подъемную силу

А для демонстрации этой идеи достаточно простого гибкого и легкого листа бумаги. Берем лист, подносим его ко рту, и дуем над ним чтобы создать модель в которой поток воздуха над листом бумаги движется быстрее чем под ним. И вуаля — с первой или второй попытки лист бумаги презрев тяготение действительно поднимается под действием подъемной силы вверх. Теорема доказана!

… или все-таки нет?..

Существует история (я правда не знаю насколько она правдива), что одним из первых людей предложивших, подобную теорию был не кто иной, как сам Альберт Эйнштейн. Согласно этой истории в 1916 году он написал соответствующую статью и на её основе предложил свою версию «идеального крыла», которое, по его мнению, максимизировало разницу скоростей над крылом и под ним, и в профиль выглядело примерно вот так:

В аэродинамической трубе продули полноценную модель крыла с этим профилем, но увы — её аэродинамические качества оказались на редкость плохими. В отличие — парадоксально! — от многих крыльев с идеально симметричным профилем, в которых путь воздуха над крылом и под ним должен был быть принципиально одинаков. В рассуждениях Эйнштейна явно что-то было неправильно. И вероятно наиболее явным проявлением этой неправильности было то что некоторые пилоты в качестве акробатического трюка стали летать на своих самолетах вверх ногами. У первых самолетов, которые пробовали перевернуться в полете, возникали проблемы с топливом и маслом, которое не текло туда, куда нужно, и вытекало там, где не нужно, но после того, как в 30-х годах прошлого века энтузиастами аэробатики были созданы топливные и масляные системы, способные работать длительное время в перевернутом положении, полет «вверх ногами» стал обычным зрелищем на авиашоу. В 1933, к примеру, один американец и вовсе совершил полет вверх ногами из Сан-Диего в Лос-Анджелес. Каким-то волшебным образом перевернутое крыло по-прежнему генерировало подъемную силу, направленную вверх.

Посмотрите на эту картинку — на ней изображен самолет, аналогичный тому, на котором был установлен рекорд полета в перевернутом положении. Обратите внимание на обычный профиль крыла (Boeing-106B airfoil) который, согласно приведенным выше рассуждениям, должен создавать подъемную силу от нижней поверхности к верхней.

Итак, у нашей простой модели подъемной силы крыла есть некоторые трудности, которые можно в целом свести к двум простым наблюдениям:

  1. Подъемная сила крыла зависит от его ориентации относительно набегающего потока воздуха — угла атаки
  2. Симметричные профили (в том числе и банальный плоский лист фанеры) тоже создают подъемную силу

В чем же причина ошибки? Оказывается, что в приведенном в начале статьи рассуждении совершенно неверен (и вообще говоря, просто взят с потолка) пункт №4. Визуализация потока воздуха вокруг крыла в аэродинамической трубе показывает, что фронт потока, разделенный на две части крылом, вовсе не смыкается обратно за кромкой крыла.

Проще говоря, воздух «не знает», что ему нужно двигаться с какой-то определенной скоростью вокруг крыла, чтобы выполнить какое-то условие, которое нам кажется очевидным. И хотя скорость потока над крылом действительно выше, чем под ним, это является не причиной образования подъемной силы а следствием того, что над крылом существует область пониженного давления, а под крылом — область повышенного. Попадая из области нормального давления в разреженную область, воздух разгоняется перепадом давлений, а попадая в область с повышенным давлением — тормозится. Важный частный пример столь «не-бернуллевского» поведения наглядно демонстрируют экранопланы: при приближении крыла к земле его подъемная сила возрастает (область повышенного давления поджимается землей), тогда как в рамках «бернуллевских» рассуждений крыло на пару с землей формируют нечто вроде сужающегося тоннеля что в рамках наивных рассуждений должно было бы разгонять воздух и притягивать за счет этого крыло к земле подобно тому, как это делается в схожих по смыслу рассуждениях о «взаимном притяжении проходящих на параллельных курсах пароходах». Причем в случае экраноплана ситуация во многом даже хуже, поскольку одна из «стенок» этого тоннеля движется с высокой скоростью навстречу крылу, дополнительно «разгоняя» тем самым воздух и способствуя еще большему снижению подъемной силы. Однако реальная практика «экранного эффекта» демонстрирует прямо противоположную тенденцию, наглядно демонстрируя опасность логики рассуждений о подъемной силе построенных на наивных попытках угадать поле скоростей потока воздуха вокруг крыла.

Как это ни странно, значительно более приближенное к истине объяснение дает другая неверная теория подъемной силы, отвергнутая еще в XIX веке. Сэр Исаак Ньютон предполагал, что взаимодействие объекта с набегающим воздушным потоком можно моделировать, предположив, что набегающий поток состоит из крошечных частиц, ударяющихся об объект и отскакивающих от него. При наклонном расположении объекта относительно набегающего потока частицы будут преимущественно отражаться объектом вниз и в силу закона сохранения импульса при каждом отклонении частицы потока вниз объект будет получать импульс движения вверх. Идеальным крылом в подобной модели был бы плоский воздушный змей, наклоненный к набегающему потоку:

Подъемная сила в этой модели возникает за счет того, что крыло направляет часть воздушного потока вниз, это перенаправление требует приложения определенной силы к потоку воздуха, а подъемная сила является соответствующей силой противодействия со стороны воздушного потока на крыло. И хотя исходная «ударная» модель вообще говоря неверна, в подобной обобщенной формулировке

это объяснение действительно верно. Любое крыло работает за счет того, что отклоняет часть набегающего потока воздуха вниз и это, в частности, объясняет, почему подъемная сила крыла пропорциональна плотности потока воздуха и квадрату его скорости. Это дает нам первое приближение к правильному ответу: крыло создает подъемную силу потому что линии тока воздуха после прохождения крыла в среднем оказываются направлены вниз. И чем сильнее мы отклоняем поток вниз (например увеличивая угол атаки) — тем подъемная сила оказывается больше.

Немного неожиданный результат, правда? Однако он пока никак не приближает нас к пониманию того, почему воздух после прохождения крыла оказывается движущимся вниз. То, что Ньютоновская ударная модель неверна, было показано экспериментально опытами, которые продемонстрировали что реальное сопротивление потока ниже, чем предсказывает Ньютоновская модель, а генерируемая подъемная сила — выше. Причиной этих расхождений является то, что в модели Ньютона частички воздуха никак не взаимодействуют друг с другом, тогда как реальные линии тока не могут пересекать друг друга, так как это показано на рисунке выше. «Отскакивающие» под крылом вниз условные «частички воздуха» сталкиваются с другими и начинают «отталкивать» их от крыла еще до того, как они с ним столкнутся, а частички воздушного тока, оказавшиеся над крылом, «выпихивают» частички воздуха, расположенные ниже, в пустое пространство, остающееся за крылом:

Говоря другими словами, взаимодействие «отскочившего» и «набегающего» потоков создает под крылом область высокого давления (красную), а «тень», пробиваемая крылом в потоке, образует область низкого давления (синюю). Первая область отклоняет поток под крылом вниз еще до того, как этот поток соприкоснется с его поверхностью, а вторая заставляет поток над крылом изгибаться вниз, хотя он с крылом не соприкасался вообще. Совокупное давление этих областей по контуру крыла, собственно, и образует в итоге подъемную силу. При этом интересный момент состоит в том, что неизбежно возникающая перед крылом область высокого давления у правильно спроектированного крыла соприкасается с его поверхностью лишь по небольшому участку в передней кромке крыла, тогда как область высокого давления под крылом и область низкого давления над ним соприкасаются с крылом на значительно большой площади. В результате подъемная сила крыла формируемая двумя областями вокруг верхней и нижней поверхностей крыла может быть намного больше, чем сила сопротивления воздуха, которую обеспечивает воздействие области высокого давления, расположенной перед передней кромкой крыла.

Поскольку наличие областей разного давления изгибает линии тока воздуха, то часто удобно определять эти области именно по этому изгибу. К примеру, если линии тока над крылом «загибаются вниз», то в этой области существует градиент давления направленный сверху вниз. И если на достаточно большом удалении над крылом давление является атмосферным, то по мере приближения к крылу сверху вниз давление должно падать и непосредственно над крылом оно окажется ниже атмосферного. Рассмотрев аналогичное «искривление вниз», но уже под крылом, мы получаем, что если начать с достаточно низкой точки под крылом, то, приближаясь к крылу снизу вверх, мы придем в область давления, которое будет выше атмосферного. Аналогичным образом «расталкивание» линий тока перед передней кромкой крыла соответствует существованию перед этой кромкой области повышенного давления. В рамках подобной логики можно сказать, что

крыло создает подъемную силу, изгибая линии тока воздуха вокруг крыла. Поскольку линии тока воздуха как бы «прилипают» к поверхности крыла (эффект Коанда) и друг к другу, то, изменяя профиль крыла, мы заставляем воздух двигаться вокруг него по искривленной траектории и формировать в силу этого нужный нам градиент давлений. К примеру, для обеспечения полета вверх ногами достаточно создать нужный угол атаки, направив нос самолета в сторону от земли:

Снова немного неожиданно, правда? Тем не менее это объяснение уже ближе к истине, чем исходная версия «воздух ускоряется над крылом, потому что над крылом ему нужно пройти большее расстояние, чем под ним». Кроме того, в его терминах легче всего понять явление, которое называется «срывом потока» или «сваливанием самолета». В нормальной ситуации увеличивая угол атаки крыла мы увеличиваем тем самым искривление воздушного потока и соответственно подъемную силу. Ценою за это является увеличение аэродинамического сопротивления, поскольку область низкого давления постепенно смещается из положения «над крылом» в положение «слегка за крылом» и соответственно начинает притормаживать самолет. Однако после некоторого предела ситуация неожиданно резко изменяется. Синяя линия на графике — коэффициент подъемной силы, красная — коэффициент сопротивления, горизонтальная ось соответствует углу атаки.

Дело в том, что «прилипаемость» потока к обтекаемой поверхности ограничена, и если мы попытаемся слишком сильно искривить поток воздуха, то он начнет «отрываться» от поверхности крыла. Образующаяся за крылом область низкого давления начинает «засасывать» не поток воздуха, идущий с ведущей кромки крыла, а воздух из области оставшейся за крылом, и подъемная сила генерируемая верхней частью крыла полностью или частично (в зависимости от того, где произошел отрыв) исчезнет, а лобовое сопротивление увеличится.

Для обычного самолета сваливание — это крайне неприятная ситуация. Подъемная сила крыла уменьшается с уменьшением скорости самолета или уменьшением плотности воздуха, а кроме того поворот самолета требует большей подъемной силы, чем просто горизонтальный полет. В нормальном полете все эти факторы компенсируют именно выбором угла атаки. Чем медленнее летит самолет, чем менее плотный воздух (самолет забрался на большую высоту или садится в жаркую погоду) и чем круче поворот, тем больше приходится делать этот угол. И если неосторожный пилот переходит определенную черту, то подъемная сила упирается в «потолок» и становится недостаточной для удержания самолета в воздухе. Добавляет проблем и увеличившееся сопротивление воздуха, которое ведет к потере скорости и дальнейшему снижению подъемной силы. А в результате самолет начинает падать — «сваливается». Попутно могут возникнуть проблемы с управлением из-за того, что подъемная сила перераспределяется по крылу и начинает пытаться «повернуть» самолет или управляющие поверхности оказываются в области сорванного потока и перестают генерировать достаточное управляющее усилие. А в крутом повороте, к примеру, поток может сорвать лишь с одного крыла, в результате чего самолет начнет не просто терять высоту, но и вращаться — войдет в штопор. Сочетание этих факторов остается одной из нередких причин авиакатастроф. С другой стороны, некоторые современные боевые самолеты специально проектируются таким специальным образом, чтобы сохранять управляемость в подобных закритических режимах атаки. Это позволяет подобным истребителям при необходимости резко тормозить в воздухе. Иногда это используется для торможения в прямолинейном полете, но чаще востребовано в виражах, поскольку чем меньше скорость, тем меньше при прочих равных радиус поворота самолета. И да-да, Вы угадали — именно это та самая «сверхманевренность», которой заслуженно гордятся специалисты проектировавшие аэродинамику отечественных истребителей 4 и 5 поколений.

Однако мы пока так и не ответили на основной вопрос: откуда, собственно, возникают области повышенного и пониженного давления вокруг крыла в набегающем потоке воздуха? Ведь оба явления («прилипание потока к крылу» и «над крылом воздух движется быстрее»), которыми можно объяснить полет, являются следствием определенного распределения давлений вокруг крыла, а не его причиной. Но почему формируется именно такая картина давлений, а не какая-то другая?

К сожалению, ответ на этот вопрос уже неизбежно требует привлечения математики. Давайте представим себе, что наше крыло является бесконечно длинным и одинаковым по всей длине, так что движение воздуха вокруг него можно моделировать в двумерном срезе. И давайте предположим, для начала, что в роли нашего крыла выступает… бесконечно длинный цилиндр в потоке идеальной жидкости. В силу бесконечности цилиндра такую задачу можно свести к рассмотрению обтекания круга в плоскости потоком идеальной жидкости. Для столь тривиального и идеализированного случая существует точное аналитическое решение, предсказывающее, что при неподвижном цилиндре общее воздействие жидкости на цилиндр будет нулевым.

А теперь давайте рассмотрим некое хитрое преобразование плоскости на себя, которое математики называют конформным отображением. Оказывается можно подобрать такое преобразование, которое с одной стороны сохраняет уравнения движения потока жидкости, а с другой трансформирует круг в фигуру, имеющую похожий на крыло профиль. Тогда трансформированные тем же самым преобразованием линии тока жидкости для цилиндра становятся решением для тока жидкости вокруг нашего импровизированного крыла.

Наш исходный круг в потоке идеальной жидкости имеет две точки, в которых линии тока соприкасаются с поверхностью круга, и следовательно те же две точки будут существовать и на поверхности профиля после применения к цилиндру преобразования. И в зависимости от поворота потока относительно исходного цилиндра («угла атаки») они будут располагаться в разных местах поверхности сформированного «крыла». И почти всегда это будет означать, что часть линий тока жидкости вокруг профиля должна будет огибать заднюю, острую кромку крыла, как показано на картинке выше.

Это потенциально возможно для идеальной жидкости. Но не для реальной.

Наличие в реальной жидкости или газе даже небольшого трения (вязкости) приводит к тому, что поток подобный изображенному на картинке немедленно нарушается — верхний поток будет сдвигать точку где линия тока соприкасается с поверхностью крыла до тех, пор пока она не окажется строго на задней кромке крыла (постулат Жуковского-Чаплыгина, он же аэродинамическое условие Кутты). И если преобразовать «крыло» обратно в «цилиндр», то сдвинувшиеся линии тока окажутся примерно такими:

Но если вязкость жидкости (или газа) очень мала, то получившееся подобным путем решение должно подходить и для цилиндра. И оказывается, что такое решение действительно можно найти, если предположить, что цилиндр вращается. То есть физические ограничения, связанные с перетоком жидкости вокруг задней кромки крыла приводят, к тому, что движение жидкости из всех возможных решений будет стремиться прийти к одному конкретному решению, в котором часть потока жидкости вращается вокруг эквивалентного цилиндра, отрываясь от него в строго определенной точке. А поскольку вращающийся цилиндр в потоке жидкости создает подъемную силу, то ее создает и соответствующее крыло. Компонент движения потока соответствующий этой «скорости вращения цилиндра» называется циркуляцией потока вокруг крыла, а теорема Жуковского говорит о том, что аналогичную характеристику можно обобщить для произвольного крыла, и позволяет количественно рассчитывать подъемную силу крыла на ее основе. В рамках этой теории подъемная сила крыла обеспечивается за счет циркуляции воздуха вокруг крыла, которая порождается и поддерживается у движущегося крыла указанными выше силами трения, исключающими переток воздуха вокруг его острой задней кромки.

Удивительный результат, не правда ли?

Описанная теория конечно сильно идеализирована (бесконечно длинное однородное крыло, идеальный однородный несжимаемый поток газа / жидкости без трения вокруг крыла), но дает довольно точное приближение для реальных крыльев и обычного воздуха. Только не воспринимайте в ее рамках циркуляцию как свидетельство того, что воздух действительно вращается вокруг крыла. Циркуляция — это просто число, показывающее, насколько должен отличаться по скорости поток на верхней и нижней кромках крыла, чтобы решение движений потока жидкости обеспечило отрыв линий тока строго на задней кромке крыла. Не стоит также воспринимать «принцип острой задней кромки крыла» как необходимое условие для возникновения подъемной силы: последовательность рассуждений вместо этого звучит как «если у крыла острая задняя кромка, то подъемная сила формируется так-то».

Попробуем подытожить. Взаимодействие воздуха с крылом формирует вокруг крыла области высокого и низкого давления, которые искривляют воздушный поток так, что он огибает крыло. Острая задняя кромка крыла приводит к тому, что в идеальном потоке из всех потенциальных решений уравнений движения реализуется только одно конкретное, исключающее переток воздуха вокруг острой задней кромки. Это решение зависит от угла атаки и у обычного крыла имеет область пониженного давления над крылом и область повышенного давления — под ним. Соответствующая разница давлений формирует подъемную силу крыла, заставляет воздух двигаться быстрее над верхней кромкой крыла и замедляет воздух под нижней. Количественно подъемную силу удобно описывать численно через эту разницу скоростей над крылом и под ним в виде характеристики, которая называется «циркуляцией» потока. При этом в соответствии с третьим законом Ньютона действующая на крыло подъемная сила означает, что крыло отклоняет вниз часть набегающего воздушного потока — для того, чтобы самолет мог лететь, часть окружающего его воздуха должна непрерывно двигаться вниз. Опираясь на этот движущийся вниз поток воздуха самолет и «летит».

Простое же объяснение с «воздухом, которому нужно пройти более длинный путь над крылом, чем под ним» — неверно.

Почему самолеты летают? Требуемый минимум для взлета

Человек всегда мечтал летать в небе. Помните историю об Икаре и его сыне? Это, конечно, всего лишь миф и как было на самом деле мы никогда не узнаем, но жажду парить в небе эта история раскрывает сполна. Первые попытки взлететь в небо были сделаны при помощи огромного воздушного шара, который сейчас скорее средство для романтических прогулок в небе, затем появился дирижабль, а вместе с этим позже появляются самолеты и вертолеты. Сейчас уже практически ни для кого не является новостью или чем-то необычным то, что можно слетать за 3 часа самолетом на другой континент. Но как это происходит? Почему самолеты летают и не падают?

Объяснение с физической точки зрения довольно простое, но тяжелее это исполнить на практике

Многие годы проводились различные эксперименты по созданию летающей машины, было создано много прототипов. Но чтобы понять, почему самолеты летают, достаточно знать второй закон Ньютона и уметь это воспроизвести на практике. Сейчас уже люди, а точнее инженеры и ученые, стараются создать такую машину, которая бы летала на колоссальных скоростях, превышающих в несколько раз скорость звука. То есть вопрос уже состоит не в том, как летают самолеты, а как сделать так, чтобы они летали быстрее.

Две вещи для того, чтобы самолет взлетел — мощные двигатели и правильная конструкция крыльев

Двигатели создают огромную тягу, которая толкает конструкции самолета вперед. Но этого недостаточно, ведь нужно еще и вверх подняться, а при таком раскладе выходит, что пока что мы можем только разогнаться по поверхности до огромной скорости. Следующим важным моментом является форма крыльев и самого корпуса самолета. Именно они создают поднимающую силу. Сделаны крылья так, что под ними воздух становится медленнее, чем над ними, и в итоге выходит, что воздух снизу толкает корпус вверх, а воздух над крылом неспособен сопротивляться этому воздействию при достижении самолетом определенной скорости. Это явление называется в физике подъемной силой, и, чтобы разобраться в этом подробнее, нужно иметь немного познаний в аэродинамике и в прочих сопутствующих законах. Но для понимания того, почему самолеты летают, этих знаний достаточно.

Посадка и взлет — что нужно для этого машине?

Для самолета необходима огромная взлетная полоса , а точнее — длинная взлетная полоса. Это связано с тем, что ему в первую очередь нужно набрать определенную скорость для взлета. Для того чтобы сила подъема начала действовать, необходимо разогнать самолет до такой скорости, что воздух снизу крыльев начнется подымать конструкцию вверх. Вопрос о том, почему низко летают самолеты, касается именно этой части, когда машина идет на взлет или на посадку. Низкий старт дает возможность подняться самолёту очень высоко в небо, и мы это часто видим в ясную погоду – рейсовые самолеты, оставляя за собой белый след, перемещают людей из одной точки в другую намного быстрее, чем это можно сделать при помощи наземного транспорта или морского.

Топливо для самолетов

Также интересует, почему самолеты летают на керосине. Да, в основном так и есть, но дело в том, что некоторые типы техники используют в качестве топлива привычный бензин и даже солярку.

Но в чем преимущество керосина? Таковых несколько.

Первым, наверное, можно назвать его стоимость. Он значительно дешевле, чем бензин. Второй причиной можно назвать его легкость, в сравнении с тем же бензином. Также керосин имеет свойство гореть, если можно так сказать, плавно. В машинах – легковых или грузовых – нам нужна возможность резкого включения и выключения двигателя, когда самолет рассчитан на то, чтобы его запустить и постоянно поддерживать движение турбин на заданной скорости длительное время, если говорить о пассажирских самолетах. Легкомоторная авиация, которая не предназначена для перевозок огромных грузов, а по большей части связана с военной промышленностью, с агрохозяйством и прочее (в такой машине могут разместиться только до двух человек), мала и маневренна, а потому бензин является подходящим для этой области. Его взрывное горение подходит для того типа турбин, которые установлены в легкой авиации.

Вертолет — конкурент или друг самолету?

Интересное изобретение человечества, связанное с перемещением в воздушном пространстве — вертолет. У него есть главное преимущество перед самолетом – вертикальные взлет и посадка. Он не требует огромного пространства для разгона, а почему самолеты летают только с оборудованных для этих целей мест? Правильно, необходима достаточно длинная и гладкая поверхность. Иначе исход посадки где-то в поле может стать чреватым разрушением машины, а того хуже — человеческими жертвами. А посадку вертолета можно совершить на крыше здания, которая приспособлена, на стадионе и т. п. Для самолета эта функция недоступна, хотя конструкторы уже работают над тем, чтобы объединить мощность и скорость самолета с вертикальным взлетом.

✈ Почему самолеты падают

Согласно последним исследованиям, шанс попасть в авиакатастрофу ничтожно мал. В 2018 году, по данным Международной ассоциации воздушного транспорта (IATA), неполадки возникали всего на одном самолёте из 750 тысяч рейсов. Да и те устранялись сразу, а пассажиров доставляли в место назначения другим бортом. На один миллион рейсов насчитывается всего 11 смертей, да и те по медицинским причинам. Падения воздушных судов — большая редкость. Однако, все же, подобные инциденты случаются. Какие же причины к этому приводят?
Человеческий фактор
Под этим понятием имеется в виду совокупность ошибок, допущенных людьми. Это могут быть не только сами пилоты, но также диспетчеры и другие сотрудники. По статистике, 50% падений самолётов связаны именно с действиями или бездействием человека. К этому фактору относятся не только сами ошибки, но и проблемы со здоровьем. Например, в сентябре 2018 года в небе над Москвой у пилота сирийского лайнера случился инфаркт. Однако тогда всё закончилось благополучно: самолёт посадил второй пилот. А вот в ноябре того же года в аналогичной ситуации в США разбился легкомоторный самолёт, в результате чего погибли 4 человека. Второй пилот на борту тоже был, но он так и не сумел посадить судно.
Технические неисправности
Этот фактор дает знать о себе почти в четверти случаев — по меньшей мере, 22% аварий в небе происходят из-за технического сбоя. Перед взлётом каждый лайнер тщательно осматривают, что минимизирует риск отказа оборудования. Тем не менее, вероятность повреждения двигателей и других механизмов всё равно существует, хотя и остается чрезвычайно маленькой. Обычно, в подобных случаях неисправности обнаруживаются при взлёте, и пилоты без проблем сажают самолёт. Пассажиров же забирает другой борт.

К этой же группе причин относят и столкновение авиалайнера с птицами, их попадание в двигатели. Например, в 1953 году самолёт «ИЛ-12», летевшей из Москвы в Новосибирск, столкнулся со стаей уток, из-за чего двигатели потеряли расчетную мощность. Командир принял решение о немедленной посадке, однако аэропорта поблизости не оказалось. Пришлось сажать машину прямо в Волгу (около речпорта Казани). После приводнения самолет начал тонуть. Однако все пассажиры успели покинуть борт, и были подобраны местными жителями. Но когда это было!

Неблагоприятные погодные условия
Эта причина объясняет 12% случаев аварий самолётов. Чаще всего негативное влияние оказывают осадки, сильный ветер и туман. Современная техника справляется с порывами и завихрениями воздуха почти всегда. Входя в зону турбулентности, самолёт начинает трясти и раскачивать. Однако даже умелые действия пилота не гарантируют безопасность на 100% — в крайне редких случаях происходит крушение. Например, в 2001 году американский лайнер, вылетевший из Нью-Йорка, упал уже через полторы минуты после взлета, из-за чего погибли 265 человек. Причиной крушения стали турбулентные потоки воздуха, возникшие от пролетавшего рядом другого самолёта. Поэтому эту аварию можно отнести и к категории человеческого фактора. А вот самолёт польского президента Леха Качиньского, разбившегося в марте 2010 года, упал как раз из-за плохой видимости, возникшей по естественным причинам. В тот день в районе аэродрома под Смоленском стоял сильный туман, поэтому при заходе на посадку судно столкнулось с березами.
Умышленные действия
В истории авиации, к сожалению, случаются и теракты. Угон самолётов, взрыв на борту и другие подобные события становятся причинами падения воздушного судна в 9% случаев. Наиболее известный пример — теракт 11 сентября 2001 года в Нью-Йорке, в результате которого погибли почти 3000 человек — в том числе, несколько сотен пассажиров и членов экипажей угнанных самолётов.
Прочие причины
Остальные факторы составляют 7% всех случаев крушения самолётов. По сути, это комплексные причины, связанные одновременно и с ошибками диспетчеров, и со сбоями в навигации, и с недостаточно качественным топливом, и т.п. Известна, например, катастрофа 2002 года над Боденским озером (Германия), когда из-за неправильных действий диспетчера столкнулись российский пассажирский и немецкий грузовой самолёты. В результате погибли все пассажиры и пилоты — всего 71 человек, в числе которых 52 ребенка.

Аварии с авиалайнерами происходили и, к сожалению, продолжают происходить. Хотя частота их заметно снижается — так, 2018 год был признан самым безопасным за всю историю авиации. Очевидно, что модернизация оборудования и развитие технологий приводят к тому, что самолёт становится еще безопаснее, чем он был даже несколько лет назад. А знание некоторых правил повысит шансы на выживание.

Комментарии ()

Еще интереснее

1

Как и почему летают самолеты?

Как летают самолеты?

Самолет относится к летательным аппаратам тяжелее воздуха. Это означает, что для его полета нужны определенные условия, сочетание точно рассчитанных факторов. Полет самолета – это результат действия подъемной силы, которая возникает при движении потоков воздуха навстречу крылу. Оно повернуто под точно рассчитанным углом и имеет аэродинамическую форму, благодаря которой при определенной скорости начинает стремиться вверх, как говорят летчики – “становится на воздух”.

Разгоняют самолет и поддерживают его скорость двигатели. Реактивные толкают самолет вперед за счет сгорания керосина и потока газов, вырывающихся из сопла с большой силой. Винтовые двигатели “тянут” самолет за собой.

Как возникает подъемная сила?

Как возникает подъемная сила?

Крыло современных самолетов является статичной конструкцией и само по себе не может самостоятельно создавать подъемную силу. Возможность поднять многотонную машину в воздух возникает только после поступательного движения (разгона) летательного аппарата с помощью силовой установки. В этом случае крыло, поставленное под острым углом к направлению воздушного потока, создает различное давление: над железной пластиной оно будет меньше, а снизу изделия – больше. Именно разность давлений приводит к возникновению аэродинамической силы, способствующей набору высоты.

Подъемная сила самолетов состоит из следующих факторов:

  1. Угла атаки
  2. Несимметричного профиля крыла

Наклон металлической пластины (крыла) к воздушному потоку принято называть углом атаки. Обычно при подъеме самолета упомянутое значение не превышает 3-5°, чего достаточно для взлета большинства моделей самолетов. Дело в том, что конструкция крыльев с момента создания первого летательного аппарата претерпела серьезные изменения и сегодня представляет собой несимметричный профиль с более выпуклым верхним листом металла. Нижний лист изделия характеризуется ровной поверхностью для практически беспрепятственного прохождения воздушных потоков.

Схематично процесс образования подъемной силы выглядит так: верхним струйкам воздуха нужно пройти больший путь (из-за выпуклой формы крыла), чем нижним, при этом количество воздуха за пластиной должно остаться одинаковым. В результате верхние струйки будут двигаться быстрее, создавая согласно уравнению Бернулли область пониженного давления. Непосредственно различие в давлении над и под крылом вкупе с работой двигателей помогает самолету набрать требуемую высоту. Следует помнить, что значение угла атаки не должно превышать критической отметки, иначе подъемная сила упадет.

Как управляют самолетом?

Как управляют самолетом?

Крыла и двигателей недостаточно для управляемого, безопасного и комфортного полета. Самолетом нужно управлять, при этом точность управления более всего нужна во время посадки. Летчики называют посадку управляемым падением – скорость самолета снижается так, что он начинает терять высоту. При определенной скорости это падение может быть очень плавным, приводящим к мягкому касанию колесами шасси полосы.

Управление самолетом совершенно не похоже на управление автомобилем. Штурвал пилота предназначен для отклонения вверх и вниз и создания крена. “На себя” – это набор высоты. “От себя” – это снижение, пикирование. Для того, чтобы повернуть, изменить курс, нужно нажать на одну из педалей и штурвалом наклонить самолет в сторону поворота… Кстати, на языке пилотов это называется “разворот” или “вираж”.

Для разворота и стабилизации полета в хвосте самолета расположен вертикальный киль. А находящиеся под ним и над ним небольшие “крылья” – это горизонтальные стабилизаторы, которые не позволяют огромной машине бесконтрольно подниматься и опускаться. На стабилизаторах для управления имеются подвижные плоскости – рули высоты.

Для управления двигателями между креслами пилотов находятся рычаги – при взлете они переводятся полностью вперед, на максимальную тягу, это взлетный режим, необходимый для набора взлетной скорости. При посадке рычаги отводят полностью назад – в режим минимальной тяги.

Многие пассажиры с интересом смотрят, как перед посадкой задняя часть огромного крыла вдруг опускается вниз. Это закрылки, “механизация” крыла, которая выполняет несколько задач. При снижении полностью выпущенная механизация тормозит самолет, чтобы не дать ему слишком разогнаться. При посадке, когда скорость очень невелика, закрылки создают дополнительную подъемную силу для плавной потери высоты. При взлете они помогают основному крылу удерживать машину в воздухе.

Чего не нужно бояться в полете?

Есть несколько моментов полета, способных напугать пассажира – это турбулентности, прохождение через облака и хорошо видимые колебания консолей крыла. Но это совершенно не опасно – конструкция самолета рассчитана на огромные нагрузки, гораздо больше тех, что возникают при “болтанке”. К подрагиванию консолей следует относиться спокойно – это допустимая гибкость конструкции, а полет в облаках обеспечивается приборами.

Самолет не боится удара молнии. Атмосферный разряд протекает только по его поверхности, поэтому могут на минуту отключиться какие-то приборы. Они снова включаются, и полет продолжается в обычном режиме. А неприятности в полете могут доставить птицы, грозовые облака, их называют “фронты”, и сильный боковой ветер при посадке.
Попадание птицы в двигатель останавливает его, в грозовых облаках, которые лайнеры стараются обойти, очень мощные воздушные потоки, способные опрокинуть самолет, а боковой ветер сдувает самолет с полосы.

Современные лайнеры – это настоящие воздушные корабли, устойчивые и полностью автоматизированные. Они летают по строго определенным маршрутам, “коридорам” пролета, под постоянным контролем с земли, а для того, чтобы самолеты расходились, имеются эшелоны – заданные для полета высоты. Они никогда не пересекаются. Но организация полетов и управление воздушным движением – это особая, очень большая и интересная тема.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Почему эти большие железные штуки летают? Говорим с детьми о самолётах


Артем Надеин

Ребёнок впервые увидел самолёт? Готовьтесь к каверзным вопросам! Зачем нужны крылья, почему он так шумит, и как вообще эта огромная штука летает? Вооружившись детской энциклопедией «Самолёты и авиация», мы составили «авиационную шпаргалку» для маленьких авиаторов и их родителей.

Подняться в небо людей вдохновили птицы: наблюдая за ними, ученые постигли многие тайны полёта. Даже само слово «авиация» (все придуманные человеком механизмы, способные летать) произошло от латинского «avis» — птица.

Почему птица летит и не падает? Секрет в особой форме крыльев с выпуклой верхней частью. Из-за неё воздух над крылом течёт быстрее, чем снизу, теряя давление — словно «разжижаясь». Разница давлений тянет птицу вверх — этот удивительный эффект называется подъёмной силой. Рассчитать её смог в 1904 году выдающийся русский учёный Николай Жуковский, заложив основы новой «воздушной» науки — аэродинамики.

Конечно, у людей нет крыльев, зато есть ум и наблюдательность. «Человечество полетит, опираясь не на силу мускулов, а на силу разума!» — говорил Жуковский. И не ошибся. Люди придумали самолёты, использовав идею птичьих крыльев, создающих подъёмную силу. Хвост для самолёта также «подглядели» у птиц — он придает устойчивость в полёте.

Подъёмную силу легко ощутить, запуская в безветренный день воздушного змея — самый простой и древний летательный аппарат. Чтобы змей летел, нужно хорошо разбежаться и тянуть его за собой. Набрав скорость, змей взлетает и плывёт в потоке воздуха, словно в реке: над землёй его удерживает подъёмная сила. Но стоит остановиться, и змей упадёт на землю: чтобы подъёмная сила действовала, нужна определённая скорость.

Если бы по земле бежал великан и тянул за веревочку самолёт, то он бы летел не хуже воздушного змея! Но, увы, великанов не существует, и самолёту нужно самому набирать скорость, чтобы лететь — с помощью двигателей.

Раньше в самолётах были поршневые двигатели — такие же, как у автомобилей, только громче. Они вращали большие «вентиляторы» — пропеллеры (прям как у Карлсона!), которые загребали воздух лопастями, словно варенье ложками, и разгоняли самолёт. Но с ними самолёты летали медленно — не быстрее современной гоночной машины.

Всё изменилось с изобретением реактивного двигателя. Здесь нет пропеллеров и лопастей: со свистом выбрасывая струю горячего газа назад, он тянет самолёт вперёд, создавая реактивную тягу. В ясный день высоко в небе можно увидеть след реактивной струи пролетевшего самолёта. Она вылетает с такой силой, что на земле может легко перевернуть грузовик! Неудивительно, что реактивные самолёты могут летать со скоростью более 2000 км/ч!

Реактивную тягу можно создать даже дома, из подручных средств. Не верите? Развяжите надутый воздушный шарик, и он на несколько секунд превратится в «реактивный двигатель». Воздушная струя резко вырвет шарик из рук и отправит его в увлекательный, пусть и недолгий полет по комнате.

Дом самолётов — это небо, но место стоянки и «отдыха» — аэропорты; там их обслуживают, намывают до блеска и готовят к новым полётам. Аэропорт похож на большой муравейник: каждую минуту самолёты приземляются и взлетают, а тысячи пассажиров спешат по своим делам: улетают, встречают друзей или получают багаж.

Таких «муравейников» в мире — 45 тысяч, вот как сильно люди любят летать!

Ощущение полёта захватывает: не умея летать от природы, на самолёте человек может взмыть вверх на тысячи километров, взглянув свысока на облака и горы. Всего 100 лет назад это было несбыточной мечтой, а сегодня — обычное дело. И это здорово!

Самолёты увлекают нас к новым высотам не только физически. Интерес к авиации — это стремление постичь неизведанное и быть выше всех. Отличная «пища» для пытливого ума ребёнка!

По материалам книги «Самолёты и авиация».

Иллюстрации из книги.

Почему самолеты летают и не падают?

При движении самолёта воздух, обволакивающий крыья самолёта, создаёт зону пониженного давления над верхней плоскостью крыла, что, в свою очередь, создаёт подъёмную силу! Чем больше вес самолёта, тем больше необходима площадь крыла, с учётом тяговой силы мотора!

вопрос времени

к сожалению, иногда падают…

наверное это не самолеты

Иногда и падают

Потому что, пароходы ходят и не тонут

физику надо учить)))

На все воля Божья,дочь моя.

а кто тебе сказал, что не падают?

а почему люди ходят и не падают?

физику надо было в школе внимательно слушать….а не на мальчиков заглядываться….:))))) земное притяжение….ПОЧЕМУ ЭТО ОНИ НЕ ПАДАЮТ.СТОЛЬКО КАТАСТРОФ ПОЧТИ КАЖДЫЙ ДЕНЬ ПРОИСХОДИТ!!!!НОВОСТИ ЧИТАЙ!:))))))))))))))

падают еще как падают

Сложно вот так сразу сказать. Но если упадет самолет, пилотируемый мной, то последними словами в бортовом самописце будут мои: смотрите, как я умею…

еще как падают. см. «Остаться в живых» и новости.

Их еще и угоняют….в воздухе….когда они маленькие….

Ответы@Mail.Ru: почему самолет летает

Как вообще летает самолет? В простейшем случае ситуацию можно представить себе так: двигатель самолета, снабженный пропеллером, тянет самолет вперед. На крыло набегает поток встречного воздуха, обтекая крыло. И именно в форме крыла заключен секрет той силы, которая поднимает самолет в воздух. Если мы посмотрим на крыло самолета в разрезе, то увидим, что верхняя его часть более выпуклая, чем нижняя. Нижняя — практически плоская. Значит, потоку воздуха, огибающему верхнюю часть крыла, понадобится пройти намного больший путь, чем потоку, который проходит снизу крыла. Причем за одно и то же время. Понятно, что скорость потока, обтекающего крыло сверху, больше, чем скорость потока, обтекающего крыло снизу. Из школьного курса физики нам знаком закон Бернулли, который говорит о том, что чем больше скорость потока, тем меньше давление, которое этот поток оказывает на окружающее. Стало быть, возникает ситуация, при которой сверху крыла давление ниже, чем снизу. Низкое давление сверху втягивает крыло на себя, а более высокое снизу подталкивает его вверх. Крыло поднимается. И если подъемная сила превышает вес самолета, то и сам самолет зависает в воздухе. Самолету перед взлетом надо разбежаться по взлетной полосе и достичь взлетной скорости. Чем больше скорость самолета, тем больше подъемная сила крыла. Поэтому самолет может взлететь, только если скорость его превышает критическую взлетную скорость. Эта скорость не постоянна, а зависит от массы самого самолета, залитого топлива и количества загруженных в него пассажиров с чемоданами. Чем больше масса самолета, тем большую скорость при разбеге надо развить, прежде чем самолет пойдет вверх. На практике самолет поднимается не горизонтально. Для того чтобы быстро набрать высоту и не зацепить стоящие вокруг аэродрома деревья и дома, надо опустить хвост, поднять нос и подниматься в небо под большим углом. Для того чтобы управлять углом подъема самолета, в хвосте самолета сделано горизонтальное оперение, снабженное рулями высоты. Руль высоты представляет собой небольшую площадку в задней части хвостового оперения, которая может отклоняться вверх или вниз, подчиняясь движениям штурвала пилота. Когда руль высоты отклоняется вверх, подъемная сила хвостового оперения уменьшается, хвост опускается вниз, а нос, наоборот, задирается вверх. Когда самолет задирает нос, он как бы взбирается на воздушную горку, скользя по подъему крыльями. Взбираться в горку тяжелее, чем лететь по горизонтали. Поэтому скорость падает, и может оказаться недостаточной для полета. Чтобы скомпенсировать потерю скорости, надо увеличить мощность двигателя, сделать так, чтобы пропеллер крутился быстрее и сильнее тянул самолет вперед. А вот когда рули высоты отклонены вниз, подъемная сила хвоста увеличивается, нос самолета опускается вниз и самолет начинает скользить «с горки», быстро наращивая скорость. Тут уже надо уменьшать мощность двигателя. Пилот управляет положением руля высоты с помощью штурвала. Чтобы поднять нос самолета, тянем ручку штурвала на себя. Чтобы опустить нос, толкаем штурвал от себя. В случае джойстика соответственно наклоняем джойстик на себя или от себя. На вертикальном оперении хвоста имеется руль направления. Отклоняя его вправо или влево, можно соответственно поворачивать самолет в горизонтальной плоскости. Пилот управляет рулями направления с помощью педалей. Педали также притормаживают колеса. Правая педаль притормаживает правое колесо, левая — левое. Это помогает круче повернуть при рулении на земле. Одновременное нажатие на обе педали тормозит самолет. Например, после посадки. Механизация крыла еще сложнее. Если мы покачаем штурвал или джойстик в стороны, то легко заметить, как на задней части крыла отклоняются элероны. Причем элероны отклоняются по-разному. Если повернуть штурвал вправо, то на правом крыле элерон отклонится вверх, уменьшая <a href=»/» rel=»nofollow» title=»10057755:##:2007-3/2007-1-08.html» target=»_blank» >[ссылка заблокирована по решению администрации проекта]</a>

У него же крылья есть!!!!

хорошо сочетает силы космоса и земли

Если спросить прохожего, почему летает самолёт, он остроумно ответит: по небу (по чему) . И будет неправ — как мы увидим, самолёт летает… по земле! Для начала вспомним известную задачу. На чашках весов стоят две непрозрачные коробки. В одной из них сидит муха, в другой — такая же муха летает. Что покажут весы? Ответ: нуль. Потому что летающая муха, для того чтобы держаться в воздухе, создает поток импульса, в точности равный её весу. Этот поток импульса (вес мухи) , направленный вниз, передаётся на дно коробки, уравновешивая муху, сидящую в другой коробке.

а почему ты ходишь? 🙂

изза разности плотности и давлений под крылом и над крылом))

Потому что лодка плавает!

Здравствуйте! Есть такое понятие — аэродинамическая подъёмная сила (см. рис.) , которая возникает при движении любого объекта в воздухе, если этот объект имеет форму, способствующую этому (крыло, фюзеляж… ) — это «подсмотрено» человеком у природы по полёту птиц. При этом под крылом давление и плотность воздуха возрастают, а над крылом — падают, что и создаёт подъёмную силу, направленную вверх. Соответственно, чем больше скорость движения объекта (в данном случае самолёта) тем подъёмная сила становится больше, и когда при достаточной скорости движения воздухе подъёмная сила становится больше веса, то самолёт идёт вверх, т. е. «взлетает», а если меньше, то самолёт «снижается», при равновесии — полёт идёт по горизонтали. Таким образом, полёт самолёта, его движение, происходит за счёт силы двигателя, который и толкает самолёт вперёд, что и создаёт воздушную скорость самолёта. У планера такой силой, толкающей его вперёд, является вес самого планера, который приводит к «скольжению» планера вдоль воздушного потока вниз, и при отсутствии восходящих потоков (которые и «ищут» планеристы) планер неумолимо снижается. Процесс взлёта современного самолёта делится на определённые этапы. Сначала, в стартовой позиции, стоя на тормозах, всем двигателям дают разгон до полной тяги. Когда она достигнута, тормоза отпускают и самолёт начинает «разбег» по ВПП (взлётно-посадочная полоса) . Когда скорость достигла такой, что ещё не поздно остановиться до конца ВПП, то это момент «принятия решения» (да-нет) и если соответствующее решение принято, либо взлёт (разгон) продолжается, либо начинается торможение на ВПП. Если разгон продолжается, то при достижении воздушной скорости, при которой аэродинамическая подъёмная сила начинает превышать собственный вес самолёта, происходит отрыв самолёта от ВПП и он уже «летит», начиная набирать высоту. Всего Вам доброго и смело летайте самолётами, поскольку когда едешь по дороге в автомобиле, вероятность погибнуть примерно в 100 раз больше, чем когда летите самолётом! Поэтому у выезда на автостраду с одной из американских авиабаз, где испытываются новейшие виды сверхзвуковых самолётов, многие годы стоит плакат: «Пилот! Внимание! Опасность! — Впереди автострада! «. Всего Вам доброго. <img src=»//otvet.imgsmail.ru/download/a81d179e993909d3d087e9eb72663cb3_i-197.jpg» >

Тут работает закон Бернулли. Чем выше скорость, тем меньше давление. Крыло самолёта имеет профиль выпуклый сверху. Благодаря этому воздух обтекающий крыло сверху проходит большее расстояние чем снизу за одинаковое время. Значит скорость потока выше, давление над крылом меньше.

по воздуху. по космосу -не хочет почему-то…

Главное, что коровы не летают !..) <img src=»//otvet.imgsmail.ru/download/4bc55f04926e70934f6949b9981bd383_i-259.jpg» >

за счет под*емной силы крыла самолета

при соответствующем двигателе летать может даже утюг

сверху давление ниже, так что ево как бы «выталкивает» ,и может быть еще при прямолинейном-совершено-движении он просто удаляется от круглой планеты…

Используется закон, открытый в 1738г. петербургским академиком Д. Бернулли, который об*ясняет подемную силу крыла самолета. А каким должен быть профиль крыла, как влияет угол встречи с потоком воздуха-все это и многое другое надо рассчитать. Теорию крыла, позволяющую делать такие расчеты, создал русский ученый Н. Е. Жуковский.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *